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Active Galactic Nuclei (AGN)

AGN activity is powered by the enhanced accretion unto supermassive black
holes (SMBHSs) residing in galaxy centers. As such, AGN enable us to study
the extreme physics of SMBHSs, their accretion disks, and their surrounding
media.

AGN activity is triggered by galaxy mergers/interactions. As such, AGN activity
is directly linked to the structure formation in the Universe. But AGN are not
only passive witnesses/by-products of galaxy formation! Outflows, jets, and
high-energy radiation produced in AGN may substantially influence the
surrounding (galactic and intergalactic) medium, modifying therefore the
structure formation itself via some complex feedback process. Studying how
AGN evolve with redshift is therefore important for understanding
cosmological evolution of galaxies in general.

AGN are established sources of broad-band electromagnetic emission, and the
high-energy y-ray photons in particular. Maximum energies of ultrarelativistic
particles produced thereby exceed by orders of magnitude maximum energies
accessible in our accelerators. As such, AGN enable us to study fundamental
properties of subatomic particles, cosmic-ray acceleration, and the physics
of ionized collisionless magnetized plasma, which is not accessible in our
laboratories, but which constitutes a significant part of the baryonic
Universe.



I. AGN Zoo

AGN come in many many flavors... They differ in the properties of their large-scale
environments, in the properties of their host galaxies, in the accretion rates and
accretion fuels, in the structure and state of the circumnuclear matter, and
finally in the properties of their outflows:

Quasi-Stellar Objects (quasars or QSOs; ~ 10-7 Mpc-3)
Radio-quiet quasars (RQQs)
Radio-loud quasars (RLQs)
Flat Spectrum vs Steep Spectrum Radio Quasars (FSRQs vs SSRQs)
BL Lacertae Objects (BL Lacs; ~ 107 Mpc-3)
Radio Galaxies (RGs; ~ 106 Mpc-3)
Broad Line vs Narrow Line Radio Galaxies (BLRGs vs NLRGs)
Fanaroff Riley class I vs class IT (FR Is vs FR IIs) - but not only!
WATs, NATs, XRGs, DDRGs, HYMORS, GPS/CS0Os, CSS/MSO0s...
Seyfert Galaxies (Sys; ~ 10-4 Mpc-3)
Type 1 Seyferts - Type 2 Seyferts (Sy 1s - Sy 2s)
Narrow-Line Seyferts (NLSys)
Low-Luminosity AGN (LLAGN; > 10-3 Mpc-3)
Low-Tonization Nuclear Emission-Line Region Galaxies (LINERs)
"Regular” Spiral Galaxies...



AGN Unification

GENERAL OPEN QUESTIONS:
What controls the observed diversity of AGN?
Is our current understanding of the AGN unification sufficiently good?

Why only some AGN are radio loud? What controls jet production efficiency in different
types of AGN?

Urry & Padovani

Unification Scheme(s)

anisotropic obscuration of a nuclear emission -~ i 223@“: Line

(Sy 1s = Sy 2s) v

relativistic beaming of a jet emission Broad Line
(FSRQs/BL Lacs & SSRQs = BLRGs & NLRGs/FR Is) , ; pa=Holl
accretion rate

(QSOs/FR IIs = BL Lac/FR Is) Black ' e
black hole mass . Hole Disk

(Sys 2 NL Sys) St L
age of a radio structure

(CSOs = MSOs = RGs)
Spin of SMBHs

(RL & RQ)

OPEN QUESTIONS FOR FERMI (I):
What are the y-ray properties of different types of AGN?
Are radio quiet AGN y-ray emitters at some level?

Is the y-ray emission of RL AGN shaped by the jet properties (on small and large scales)
and/or by the properties of the accreting matter?

(Fermi AGN: FSRQ)s, BL Lacs, FR Is, NLSys)
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AGN Phenomenon

All galaxies host SMBHs in their centers (10-101°M,)
All SMBHs accrete at some level, and all show some AGN-like activity (103¢-10%8 erg/s)

Radio quiet AGN are not radio silent!
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Seyferts, LINERs & Spirals: nuclear and extended radio emission
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radio quiet as a class, do produce relativistic jets
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Radio Quiet Quasars: nuclear radio emission due to the

DECLINATION (J2000)

jet activity, accretion disk/disk coronae, or
uncollimated slow disk outflows?
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Radio Quiet Quasars may be sometimes associated
with relatively low-power FR I jets [Blundell et al.]




Broad-Band AGN Spectra

4) All AGN are established sources of radio-to-X-ray emission (a mixture of different
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thermal and non-thermal components). However, the energy range >100 keV is hardly
explored in this context...
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Need for a careful investigation/identification of low-flux Fermi/LAT sources,
stacking analysis for different classes of AGN, etc.
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y-ray Emission of RQ AGN?

One can indeed expect some y-ray emission from non-jetted AGN due to the
efficient particle acceleration taking place in the turbulent and magnetized

T LB AL |

LARLI |

accretion disks/disk coronae, as possibly observed in some Galactic sources.
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Already Detected?
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Fermi/LAT has detected Narrow Line
Seyfert galaxy PMN J0948+0022.
Previously, NL Sys have been considered as
radio quiet in general. The particular source
PMN J0948+0022 is radio loud, being
characterized by a flat-spectrum radio
core. So it is " just” a blazar.

The X-ray-to-y-ray emission of PMN
J0948+0022 is modeled in a framework of
the blazar scenario (compact relativistic
jet close to the SMBH).

EGRET source 3EG J1736-2908 has been
claimed to be associated with radio quiet
Seyfert 1 galaxy GRS 1734-292. This
claim has not been confirmed, however.
Still, any meaningful upper limits in the
GeV photon energy range, offering robust

constraints on the population of

relativistic particles in the accretion
disks/disk coronae of nearby bright
Seyferts, are extremely important.
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v-ray Loud Blazars

vyssing BL Lacs?

Photon index

Most of the detected y-ray loud AGN
are blazars (FSRQs and BL Lacs).

It may seem that some general
correlations for those have been
already established.

Is it indeed the case? Ce we already
assure we are not missing some steep-
spectrum low-power BL Lacs?
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What seems to be a robust finding, is that
we do not miss powerful blazars (FSRQs)
with flat GeV spectra, ', < 2. This implies

that the mean electron energles in those
sources are relatively low, <E_> < GeV.

Is it simply due to the intense circumnuclear
photon field in FSRQs, and therefore the
enhanced radiative cooling of jet electrons?

It may be also noted that BL Lacs form very
diverse population with respect to their
broad-band spectral properties!
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y-ray Loud Radio Galaxies
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IT. Cosmological Context

AGN are detected up to the highest cosmological
distances corresponding to redshiftsup to z= 6
and beyond, probing thus uniquely and directly the
Universe which was less than Gyr-old (< 10% of its
present age). Unfortunately, huge diversity in the
emission properties of active galaxies hampers
using them as standard candles. Nevertheless, if
sufficiently understood, such distant objects
should reveal several fundamental aspects of an
early Universe.

The other issue is the role of accreting SMBHs, and
in particular of the jets/outflows formed by
these, in formation of the structures in the
Universe. It is already established that the
growth of SMBHs is strictly connected with the
growth of galaxies, and that this connection is
highly non-linear, with accreting SMBHs
influencing substantially the global structure of
the forming system via radiative and mechanical
feedback. Yet the physics involved remains vague.

Di Matteo et al.



AGN & Cosmology

GENERAL OPEN QUESTIONS:
What is the physics behind the feedback process?
How do AGN jets/outflows interact with the interstellar and intergalactic medium?

Are AGN jets/outflows powerful enough to quench starformation in elliptical galaxies and to
heat intracluster gas in cooling flows?

Recent findings:
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OPEN QUESTIONS FOR FERMI (II):
What are the y-ray properties of high-redshift AGN?

Can we probe the evolution of extragalactic background light at optical/UV frequencies with
the y-ray emission of distant AGN?

Can we explain the extragalactic y-ray background with the known classes of y-ray loud AGN?




RL AGN at High Redshifts
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TeV Absorption on EBL

1ES 1101-232

log [E2dN/dE (erg cm2 s71)]

—12f

el 1 1 Il el 1 L 1 R

1 1 1
Energy (TeV)

Still, modern Cherenkov Telescopes probes only narrow
(NIR) segment of the extragalactic background light (EBL:
0.1-1000 «m), and relatively nearby Universe (z < 0.2).

Direct measurements of EBL are difficult due to strong
foreground emission. EBL spectral shape reflects star and
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GeV Absorp’rion on Evolving EBL?
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Broad-Band Cosmic Background

Radio background due to IR-UV background due ~ X-ray background due to
all types of AGN and to stars and dust all types of AGN
starforming galaxies ~ ¢MB  (relatively uncertain) ~ (Mmissing 60% of sources

(missing 70% of sources) /4 /4 in the hard X-ray band)
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We should aim for a self-consistent interpretation of the recently characterized
broad-band extragalactic background light (in agreement with the structure
formation and AGN unification models!).



Extragalactic y-ray Background
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Population Studies with Fermi
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ITI. Elusive Relativistic Jets

1021-1024 [cm]
matter dominated?

e Mot Nyt b PoaMogs
elagmoot  1ehsz"oot  16724™od

L i
N

A : -—4— L J
16"46™ whaemo0*  1eMsomoo®
R4,

™ T 200 =0
Offset from Core Iama:'r:
L T 1

1 | L L 1
° 0N ® 0 40 %
Offset from Core (orcsec)

|
‘, = |
T 1014-10'8 [em]

NGC 6251

WSRT
610 MHz

VLA
1664 MHz

VLA
1410 MHz

VLA
1662 MHz

VLB
10651 MHz
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only non-thermal emission!

(no standard plasma diagnostics...)
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relativistic jets
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Jet Physics

GENERAL OPEN QUESTIONS:
How are relativistic jets launched from the vicinities of SMBHs?
What is the jet content? Is the jet composition changing along the outflow?

What are the main processes controlling energy dissipation and particle
acceleration processes in relativistic jets?

McKinney et al.

Merging agreement:

+ Jets are launched as Poynting flux-dominated outflows
from the ergospheres of SMBHSs and/or the innermost
parts of their accretion disks.

Homogeneous one-zone blazar models require the jets
to be dynamically dominated by (cold) protons.

The observed non-thermal broad-band jet emission is
predominantly leptonic in origin (implying the presence
of 1-100 TeV energy electrons).

OPEN QUESTIONS FOR FERMI (III):
What is the location and structure of y-ray-emitting regions in AGN jets?
What are the y-ray spectra of different types of AGN jets?

What are the underlying electron energy spectra and the particle acceleration processes
involved?

What is the y-ray duty cycle of blazars? What controls y-ray variability of blazar sources?
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In a framework of the "standard” leptonic blazar scenario,
one-zone homogeneous emission zone is assumed (Maraschi
et al. 91, Dermer & Schlickeiser 93, Sikora et al. 94). This
simple model is relatively successful in explaining several
blazar properties established so far. If this is the case
indeed, the question o be asked is why there is only one,
well defined and very compact region of the enhanced
energy dissipation within the outflow, instead of a
superposition of different emission zones (Blandford &
Levinson 95)? Also, is it a moving blob or a stationary
feature within the jet? With Fermi/LAT observations
accompanied by truly simultaneous broad-band campaigns,
we can finally confront different model predictions with X
the observations, and try to answer these questions! _—
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Where Is Blazar Emlssmn Zone’

We can use the following constraints:

1.  Characteristic (PSD) and shortest
(flux doubling) variability timescales

2. Opacity for the observed y-ray
photons (both internal and external to
the emission zone)

3. Luminosity ratios between synchr'o’rr'onE

and inverse-Compton components

4. Spectral position of the peak
frequencies for the synchrotron and
inverse-Compton components

5. Presence and position of different
spectral breaks (radiative cooling
breaks, Klein-Nishina breaks, etc.)

6. Lack of bulk-Compton and absorption
features in broad-band spectra

7. Correlations between variable fluxes
in different frequency ranges

8. Correlations between high-energy
flares with morphological changes of
resolved radio structures

9. Correlation between high-energy
flares with changes in radio/optical
polarization
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Detailed modeling of the broad-band blazar
spectra performed so far typically suggests that
the blazar emission zone in FSRQs is located
relatively far from SMBHs, ~ 108 cm ~ 10% R,
Still, distances outside of this range are not
excluded. In particular, for BL Lacs the blazar
emission zone seems to be located much closer to
SMBHs. Fermi/LAT data will enable to critically
re-examine all the discussed constraints!



Structure of the Blazar Zone
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Decelerating jet scenario (Georganopoulos et al.) Jet-in-jet scenario (Giannios et al.)

Complex (confusing!) pattern of a broad-band rapid variability established for several sources,
as well as the detections of radio galaxies at high energy y-ray photon energy range, let to the
emergence of stratified models for the blazar emission zone.

More truly simultaneous broad-band data for a larger sample of objects are needed to verify
the proposed scenarios, and to understand the true structure of the emission region.



Log: VF, [erg/cm?®/s]

High Energy Blazar Spectra

-9 T T
PKS1510-089
_1ol Kataoka et al.
o | EGRET
—_ 12 L
i S
-13} AN
| AN
F 1 \
[PEER
s e .
n Ji AN
g S \ .
10 15 20 25
Log: Frequehcy [Hz]
Table 1
Luminous Blazar Sgllrces with the Hardest Recorded X-ray Spectra
Name z o, a}’f a)l Reference
(1) (2) (3) (4) (5) (6)
S50212+73 2.367 0.32+0.19 Sambruna et al. (2007)
PKS 0229+13 2.059 0.39 £0.09 Marshall et al. (2005)
PKS 0413-21 0.808 0.39+£0.12 cee s Marshall et al. (2005)
PKS 0528+134 2.060 0.12+0.26 1.46 £ 0.04 1.54 £0.09 Donato et al. (2005)
PKS 0537-286 3.104 0.27 £0.02 1.47 £+ 0.60 s Reeves et al. (2001)
PKS 0745+241 0.409 035=0.12 cee Marshall et al. (2005)
SWIFT J0746.3+2548 2.979 0.17 £ 0.01 cee Watanabe et al. (2009)
PKS 0805-07 1.837 0.20 £0.20 1.34 £ 0.29(7) Giommi et al. (2007)
S5 0836+710 2.172 0.34 £0.04 1.62+£0.16 Donato et al. (2005)
RGB J0909+039 3.200 0.26 £0.12 cee s Giommi et al. (2002)
PKS 1127-145 1.184 0.20+0.03 1.70 £ 0.31 1.69 =0.18 Siemiginowska et al. (2008)
PKS 1424-41 1.522 0.20+=0.30 1.13£0.21 ce Giommi et al. (2007)
GB 1428+4217 4.715 0.29 = 0.05 S s Fabian et al. (1998)
PKS 1510-089 0.360 0.23 £0.01 1.47 £ 0.21 1.48 £0.05 Kataoka et al. (2008)
PKS 1830-211 2.507 0.09 £0.05 1.59£0.13 cee De Rosa et al. (2005)
PKS 2149-306 2.345 0.38 £0.08 cee Donato et al. (2005)
PKS 22234210 1.959 0.31+£0.26 e s Donato et al. (2005)
3C 454.3 0.859 0.34 = 0.06 1.21 £ 0.06 1.41 £0.02 Donato et al. (2005)

Notes. (1) Name of a source: (2) redshift of a source, z: (3) X-ray spectral index, «,: (4) EGRET y-ray spectral index. a;’f (Hartman

etal. 1999); (5) FERMI y-ray spectral index, a)’ (Abdo et al. 2009b); and (6) references.
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Bright FSRQs reveal repeatedly very flat X-ray
spectra of power-law forms with photon indices
I'y = 1.5, and steep y-ray spectra of broken
power-law form with photon indices T, > 2 with
breaks AT > 0.5. Such high-energy (inverse-
Compton) spectra deviate substantially from
the ones expected in a framework of a
“standard” scenario (a low-energy I, , = 1.5
continuum modified at high energies by
radiative cooling to give I, = 2.0). The high
energy spectral breaks observed by Fermi/LAT
seem to be due to intrinsic breaks in the
underlying electron energy distribution.



Underlying Electron Spectra
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In FSRQs, the energy distribution of the radiating
electrons seem to be of the form n,(E) «

51 = 2, 52 > 2, Emin ~ MeV, Ebr ~ 01‘1 GeV

Such electron spectra differ substantially from
the ones expected in the case of a diffusive shock
acceleration (non-relativistic test-particle limit).
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The most surprising finding is that the
revealed photon (and therefore electron)
spectra do not depend on the activity
state of a source! This, again, is not what
we have expected to observe....

At the moment, the theory of particle
acceleration in relativistic regime is not
quantitative enough to make robust
predictions regarding emerging particle
spectra. Fermi observations will help to
develop theoretical models of particle
acceleration in relativistic plasmal
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log (E® dN/dE)

log (E? dN/dE)

"Supercritical” Phenomena?

log (E/m e?)

For example, "photon breeding” model by Stern & Poutanen.
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What about “supercritical”
phenomena, which are at
some level inevitable for
relativistic outflows in a

dense radiative

environment? In general,
what about absorption

1 effects and emission of

i secondary particles? Can

log (E/m c?)

we find any spectral

signatures for such?
Excellent Fermi data will
enable to look for these.



Looking Forward

This is an exciting time for AGN research, since for the very first time
truly multiwavelength and simultaneous high-quality data can be
gathered for a large number of sources.

Despite intense investigations in the past, the physics of AGN and their
relativistic outflows still remains elusive. On the other hand, during the
last years a substantial progress in this field has been made, mostly due
to the development in numerical modeling and observational techniques.

Fermi/LAT will definitely help to answer several open questions
regarding the physics of AGN in a near future, for example:

1. What are the y-ray properties of different types of AGN?
2. Are radio quiet AGN y-ray emitters at some level?

3. Is the y-ray emission of RL AGN shaped by the jet properties (on small and large scales) and/or by the
properties of the accreting matter?

4. What are the y-ray properties of high-redshift AGN?
5

. Can we probe the evolution of extragalactic background light at optical/UV frequencies with the y-ray
emission of distant AGN?

6. Can we explain the extragalactic y-ray background with the known classes of y-ray laud AGN?
7. What is the location and structure of y-ray-emitting regions in AGN jets?
8. What are the y-ray spectra of different types of AGN jets?

9. What are the underlying electron energy spectra and the particle acceleration processes involved?
10. What is the y-ray duty cycle of blazars? What controls y-ray variability of blazar sources?



